THE OZNAKI ROBOTICS LANGUAGE O0Z

AUTHOR: Harvey A. Cohen
Mathematics Department,
La Trobe University,
Bundoora, Victoria, 3083.

0Z is a computer language for children of primary school
age in which the child calls upon a computer termed the
WIZARD to direct the activities of a simple robot called
ZONKY. The child commands the WIZARD by punching the
buttons of a specialised keyboard: the layout of the keys
being based on the syntax of 0Z. The string of commands
to the WIZARD is displayed on a CRT which serves as a
message screen. Control characters sent by the WIZARD to
ZONKY also appear on the message screen. The WIZARD can
"remember" the name given to a string of commands - that
is the child can define programs and execute them. The
inclusion in 0Z of modifiers akin to adjectives/adverbs
enables relatively sophisticated iterative programs to be
written.

Currently the WIZARD is a PDP-10 computer but a micropro-
cessor WIZARD is under construction. The construction of
ZONKY and the implementation of 0Z is part of an educa-
ticnal development endeavour called the OZNAKI Project.

Key Words and Phrases: Message passing, Iteration, Robotics.

CR Categories:].50, 3.89, 4.29.

128

1. THE OZ SYSTEM

0Z is a computer system in which children program the activities
of a rather rudimentary robot named ZONKY. The development of OZ is part of
the OZNAKI Project at La Trobe University. OZNAKI is Polish for sign - and
the overriding objective of the OZNAKI Project (Cohen 1976) is to design
computer environments in which the abstract symbols of mathematics are given
concrete embodiment.

In this section of the paper we supply some background notes and
then describe the 0Z automaton, ZONKY, and other hardware features of OZ.
In Section 2 we present a detailed introduction to the OZ robotics language.
Section 3 discusses the educational significance of 0Z.

1.1 Background

The idea of a robotics language for children was first conceived
by Seymour Papert and his collaborators at Cambridge, Mass. (Feurzig et al
1969, Papert 1971) who developed the LOGO language (Abelson et al 1974) an
automaton called a TURTLE, graphic termin 1 displays, and a symbol display
system on the PLATQ Plasma screen (Pearlma.. 1974, Eastwood and Ballard 1975).
LOGO at M.I.T. has, however, been largely concerned with computexr graphics,
the TURTLE being replaced by a triangle that moves about a CRT screen.

1.2 Components of the OZ System

0Z hardware comprises the robot ZONKY, a specialised keyboard, a
CRT screen termed the Message Screen, and the computer controller termed
the WIZARD. 1In the current implementation at La Trobe, the WIZARD is a
PDP-10 computer, but during 1976 a microprocessor controller will be con-
structed.

Commands punched out by a child on the 0Z keyboard are displayed
on the message screen, along with various messages from the WIZARD to the
child. Also displayed on the message screen are the ASCII control charadc-
ters that direct the robot: these messages from the WIZARD to ZONKY are in
a distinctive format.

A judicious choice of robot control code was made so that the
messages from child user to WIZARD are invisible to ZONKY. Conseguently in
the DEC-10 0Z system only a single data line from the computer is required.

1.3 0Z Keyboard

A conventional teletype keyboard that generates ASCII characters
may be used with 0Z. However as we have been teaching very young children
(from 5 years upwards) a specialised keyboard was designed. The 0Z key-
board has a level surface on which is mounted a plastic overlay on which
the areas to punch are printed. The overlay may be marked with a felt pen
by the teacher, who may mount various overlays on which only the more basic
key positions are indicated. Thus a young child may at his first lesson
just use the overlay on which the numbers, the motor commands @ ®
(:), and the DO IT Button are indicated.

The keys emit a'clear metallic click when depressed. Physically

129

the keys are curved gold plated phosphor bronze strips, directly mounted on
the circuit board on which is also mounted LSI encoder and UART etc. The
encoder has an N roll feature, so that one key need not be released before
the next one is depressed.

The arrangements of keys on the keyboard is based on the syntax of
0Z and is shown in Fig.(i). Lower case letters may be used - as is pedagog-
ically desirable - if the message screen used can display them.

O]
®

‘ ®
| ® U
T

@
@0 0606
© ®e0e

©-660 0@

°|

Q- @~ —@

O @ ©® ©
1
|
@
O® ® 06 o

O]

Fig. (1) The 0Z Keyboard.
1.4 The Robot ZONKY

This robot crawls about on a level paper surface and while moving
or stationary may switch on its lights and toot. A felt tipped pen can be
mounted centrally so that the path can be marked on the paper.

The basic mechanical requirements of the robot are that it can
move backwards and forwards in a straight line and can turn on the spot
about the marker pen. This is achieved if the robot has two parallel
driving wheels, driven independently by two reversible motors, and if any
other wheels needed for stability can swivel freely.

The original robot, called ZONKY, was based on a $15 plastic toy
tank (which had one DC motor driving each track via 60 to 1 gearboxes) .
The tank was loaded with lead shot - not for its guns - but to minimise
drift on turns. Our new model ZONKY will present a less military appear-
ance

Elco~tronically ZONKY is very much at the current state of the art.
rhe all C-MOS controller on board decodes ASCII control characters and
switches on the corresponding power circuits. The controller also counts
engine revolutions.

ZONKY is gaily painted and looks like any toy. His front is ob-
vious and is marked with a large F. The symbols R and L are marked on wings
mounted forward of the centre so that irrespective of which way the robot is
facing the direction of turn - whether Right or Left - is obvious.

130

2. AN 0Z PRIMER

The OZ language is composed of strings of symbols (OZNAKI in
Polish) punched one by one at the special 0Z keyboard of Fig.(i). It is im-
possible to give a formal description of 0Z as the symbols lead not just to
mathematical operations but effect the real-time behaviour of an automaton.
One wonders if a formalised presentation is worthwhile in any case - five
year olds learn the basics of OZ in a few lessons. Certainly a glossary of
0Z commands is nearly unintelligible. What we have done in this section is
to present the details of the 0Z language in the manner of a primer.

The keyboard symbols are regarded by the (child) user as standing
for words in the 0Z language. And in fact OZ is not so far different from
English. 1In a formal discussion of 0Z one might classify these words as
numbers, modifiers, nouns, and verbs - modifiers being akin to. adjectives.
To appreciate the syntax of 0Z, just remember that of English! One thinks
of these words in OZ as being directed at the computer controller of the 02
system, which is playfully referred to as the WIZARD OF OZ. However there
is in OZ one peculiarity about these commands directed at the WIZARD: no
matter how many words one says to him/her/it the WIZARD waits for the word

before doing anything. Thus roughly (i) is DO IT.

2.1 Symbols and syntax

The symbols used in OZ comprise all 26 letters of the alphabet
(either upper case or lower case), the numbers 0 to 9, the dot ".", the
slash symbol "/", the space " ", and carriage return which we denote by "*".
These symbols are clustered together on the 0Z keyboard into the following
groups:

Numbers : (:) cen (:)

Modifiers: @ @ @ @ @ ®

Motor and Sit Commands: @ ® @ @
Music Commands: (:) (:) (:) (:)

Memory and Print Commands: (:) (:) (:)
Variable Commands: @ @ @ @

The layout of the groups on the keyboard is consistent with the order of
composing the paradigm OZ statement:

©@® 0 0660 © 0 O

Note that modifiers and numbers precede the single command that they modify
to yield what might be called a "composite" command.

In teaching very young children (less than five years) keyboard
covers can be used that progressively reveal more of the keyboard groups.

2.2 The Motor Commands

The basic commands directing the movements of the robot ZONKY are

® = rorwarp, (8) = Back, (R) = RIGHT and (D) = LEFT.

131

(STEP). The forward (or backward) steps taken are in the direction (or
opposite the direction) of the current heading of ZONKY. Right and Left
refers to clockwise or anti-clockwise turns (by about 20° per step) on the
spot, the direction of turn being marked on ZONKY's wings for the benefit
of the child. These 0Z "nouns" are invariably used in children's programs
in conjunction with the modifiers

(®) = HONKING and (B) = ALIGHT.

If a student pushes the buttons (in sequence written)

® o ®
THREE FORWARD DO IT

then the 0Z robot conly moves fcrward in three distinct steps (there is a
time lapse of 1 second after each forward "step"). The distance moved by
ZONKY as indicated by the pen trace mark drawn is three times the distance
travelled when ZONKY obeys the instructions

either @ @ @ or @ @
ONE FORWARD DO IT FORWARD Do IT

Similarly following the command string

O, ® ® (=

NINE ALIGHT RIGHT Do IT

ZONKY will make nine distinct turns with lights cn - with one second gaps
between each light flash. Motor commands sent by the ccmputer WIZARD to
ZONKY appear on the message along with the commands directed to the WIZARD.
Herewith is the printout when the abcve commands are given.

iF
egceceeeed

K
eeeeeeeece

9AR

ITIIIXIIIII IZIIIL
11

11D IIRIIXXIIRXE ISIIEZEIIIY IIZINIIZNE XRIXREIRERQ
IIXIZIXIILY IIILR It11t : !

111 IRRRIIL

]

Suppose ZONKY is now given the order

® @ @ © &

THREE HONKING ALIGHT FORWARD DO IT

c . /-\\
then in addition to the three-fold activities executed following (:>\§,(E>,
in this case the lights are on and the siren 1is sounding during the forward
step. As in the previous instance, the one second time gap between actions
makes it easy to perceive the three separate light flashes and the three
separate "honks".

132

Note that there are ten (10) characters output corresponding to
each command. Older children use the decimal feature, discussed elsewhere,
as instanced by the following print-outs on the message screen:

SHAF
CCCCCCCCCC ccccecececeee cccecececcecc

3. 4HAT
CCCCCCCCCC CCCCrCceccC cecceceeccee ccecec

SHL
FFFFFFFFFF FFFFFFFFFF FFFFFFFFFF FFFFFFFFFF FFFFFFFFFF

s e
nDDDDDLDDD DDDDDDD

1. 6B4HB. 2AB
LLLLLLLLLL LLLLLL NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NRNNNNNNNBNN MM

2.3 The Sit Commands

The 0Z command () = SIT directs the robot to stay still for
a definite sit period of approximately one second. (Compare the command
= PAUSE of 2.6.) Corresponding to each pause unit just one control
character - to be folleowed by a space - is transmitted by the WIZARD to
ZONKY. The decimal part of numbers is ignored. The SIT command is modifi-
able just like the motor commands with (:) and .

A complete command string wculd be
® @ ® ® ®
SIX HONKING ALIGHT SITS DO IT
directing the robot to stay stationary whilst six distinct honks are heard
accompanied by light flashes. As for motor commands, there is a one-second

gap between each observable action. To direct ZONKY to just make seven
toots (honks) requires the command

® @ @ O

SEVEN HONKING SITS DO IT

whilst seven distinct light flashes are emitted following the command string

Q, @ © ®

SEVEN ALIGHT SITS DO IT

Here are the me=sages appearing on the message screen corresponding to the
above SITS at the beginning of a session of 0Z.

133

WELCOME TO THE WONDERFUL WORLD OF 0Z
THE WIZARD WILL DO WHAT YOU WISH
6HAS

SSSSSsSSs

THS
RRRRRRR

TAS
ecQeQeaee

2.4 The Memory Commands

The use of procedures is a striking aspect of the child's use of
the 0Z language. In teaching a child, I focus on the idea that the WIZARD
knows just four names @‘@) ® @ which although peculiar, are really names
like Jack and Jill. And the child can tell the WIZARD to remember that one
of these names is the name of something (that the child itself has defined).
For example, if the child, guided by the keyboard layout, punches out

@ ® 6 ® 6 & 6 6 O

REMEMBER X (IS) THREE HONKING ALIGHT RIGHT TWO FORWARD DO IT

Then the WIZARD will respond in LARGE TALK (header type letters) that he now

knows what @"is". On the message screen the output is:
ZX 3HAR2F
X X 333 H H AAL RRRR 222 FFFFF
X X 3 3 H H A A R R 2 2 F
X X =zz== 3 H H A A R R e F
X 3 HHHHH A £ RRRR 2 FFFF
X X zz=== 3 H H AAARA R R 2 F
X X 3 3 H H A A R R 2 F
X X 333 H H a A R R 22222 F

The "variable" commands, /m X) are used with numbers just like
S

motor commands. For example, to ask the WIZARD to make ZONKY perform the
command called ® four times, one punches in

® ® O

On the message screen will then appear the following messages.

134

4ax

KKKKKKKKKK KKKKKKKKKK KKKKKKKKKK €eeeeceeee eeeee0eeee® KKKKKKKKKK
KKKKKKKKKK KKKKKKKKKK @eeeeeecee €00000006@ KKKKKKKKKK KKKKKKKKKK
KKKKKKKKKK eeeececeee ooeeoeeeee KKKKKKKKKK KKKKKKKKKK KKKKKKKKKK
eeeceococee ecceececeee

If ZONKY has his pen down, he will draw 4 sides of a regular (but not
necessarily closed) polygon.

Of course just as one can call Jack and Jill the "Horrible Two"
so one can tell the WIZARD such commands as the following:

® ®© & ® 6 O

® ©® O

® ® ® 6

® ® 6 0 o
as here defined is a solution to the problem of making ZONKY give as

many honks (Honking Sits) as possible with just one command. (Fortunately
there is a way of aborting commands!)

When the WIZARD is told what a name stands for, he forgets any
earlier use of that name (i.e. the new procedure definition overwrites the
0ld). One can always ask the WIZARD what a particular name stands for as
per:

® ® O©

WHAT'S X DO IT

On the message screen the WIZARD replies in LARGE TALK

ex
X X 999 W v
X X 9 9 W ¥
X X s=s== 9 9 W v
X 9999 W v
X X === 9 vWVw
X X 9 WW WV
X X 999 v L)

135

2.5 The Music Commands

In OZ there are three commands suitable for "music" programs:
(:) = TOOT, (:) = PAUSE, (:) = CLANG. In-built into the system 1is
also (J) = JINGLE BELLS.

The corresponding control characters which effect the "music"
effects are not visible so that for these commands the WIZARD's messages to

ZONKY are invisible.

(:) causes the terminal bell to operate. Thus the command

® © 06

SIX CLANGS DO IT
causes six distinct clangs. The command string
SEVEN TOOT DO IT

causes the ZONKY horn and lights to switch on for 7 times the toot duration
unit. The command string

® ® ®
NINE PAUSES DO IT
has no observable effect unless sandwiched in some command string. For 9
times the pause duration unit (the pause duration unit is the toot duration

unit) ZONKY does nothing.

Here is a typical simple music program.

ZX3T2P3T2PST4P
X X 333 TETTT 222 PPPP 333 TTTTT
X X 3 3 T 2 e P P 3 3 k3
X X === 3 T 2 P P 53 T
X 3 T 2 PPPP 3 T
X X ===== 3 T 2 P 3 T
X X 3 ..3 T 2 P 3.3 T
X X 333 T 22222 P 333 T

222 PPPP 55555 TTTTT 4 4 PPPP

2 2 P P 5 T 4 4 P P
e P P SS5 T 4 4 P P
2 PPPP S T 44444 PPPP
2 P) T 4 P
2 P S S T 4 r
22222 P 555 T] P

136

Note its simplicity - yet this program when executed is recognisably the
"Jingle Bells" first line of the Christmas Carol. It could be improved by
using &ﬁ clang commands. A more advanced program is built into the system
as a model program, that for (§)

QJ
J=/J/1/N/G/L/E/ /B/E/L/L/S/ /Y/ 3T2P3T2PST4P

In this version the words JINGLE BELLS! are output before the music. [The
command (:) causes the character following to be output by the terminal.]
A more elegant program would spell the words through the music program -
synchronising "speech" with "sound".

2.6 Growing and Diminishing

In OZ there are four modifiers

® @ © ©
HONKING ALIGHT GROWING DIMINISHING

We have previously mentioned the (?) and (§> modifiers in describing Motor
Commands in Section 2.2. To recapitulate, for the four motor commands, each
command leads to WIZARD messages to ZONKY comprising control words of
exactly 10 identical characters. When the command is modified by (E) or Ggy
these control words are still 10 characters long, but the characters in-
volved are different: ZONKY goes exactly the same distance or angle, but
performs some additional function.

Now, when a motor command is modified by (G) or (§/, the effect is
to alter the number of characters in each control word, correspondingly
altering ZONKY's step size. The effect is well shown in the following ex-
ample (which draws a converging spiral).

Note that each time the command (X, is called, the number of
characters in each (g) step increases by one, while the number in each
step decreases by one. The first time @)is called, these steps have their
usual length.

ZXSDF2GR

X X 55555 DLCDD FFFFF 222 GGGG RERR

X X 5 D D F 2 2 G R R
X X =m=z== 555 D D F 2 G R R
X 5 D D FFFF 2 G RFRR
X X =m=s= 5 D D F 2 G GGG R R

X X S 5 D D F 2 G G R R

X X §55 DDDD F 22222 GGG R R

137

X
eeecocceee eeeeeeceee eeeeeeccee eecereccee eeeceeeeee@e HHHHHHHHHH
HHHHHHHHHH

2X

eepeceecee ecceocecece cececeeccee eceecceeecee eeeeeeeef® HHHHHHHHHH
HHHHHHHHHH eeeeeeeee eeeeeeeee eeoceceecece eecececcee ceceeeeoe
HHHHHHHHHHH HHHHHHHHHHH

33X
eeeeepreeee eeeccccece eeceecceee eeeececcer ceeoeeeeeée HHHHHHHHHH

HHHHHHHHHH eeeeeeeee eeeceeede eeeceeeree ePeeeeeeee eecececee
HHHHHHHHHHH HHHHHHHHHHH eeeeeeeée eeeeecee eceoee0ee eececoce
eeeeeeee® HHHHHHHHHHHH HHHHHHHHHHHH

4x

eeeeeoccee eeceeceree ceegeoccee ececeecpece e HHHHH
KHHHHHHHHH eeeeeeecde eeeeeeced eeeeecee 000388323 8880%%%%1
HHHHHHHHHHH HHHHHHHHHHH eeeee@ee eeceeeeee eeceecce eeeeecee

eeeeeee@® HHHHHHHHHHHH HHHHHHHHHHHH eeeeeee eeeeece eeeeceee
eeeeeee eeeeeee HHHHHHHHHHHHH HHHHHHHHHHHHH

It is worth comparing the above OZ spiral program with the far
more complicated "squiral" programs of LOGO (Papert, 1971 a).

The GROWING and DIMINISHING modifiers also influence the number
of characters output by the print command (/). See Section 2.7, where the
Xmas tree program provides an amusing use of the modifiers.

A command modified by both (a) and (:) is unaffected, whereas if
it is modified twice, i.e. by ﬁ? say, then it increases (or decreases)
at twice the rate for a single modifier.

2.7 The Print Command
The command = PRINT causes the following character in the

command string to be echoed on the message screen. Thus following the
command string

ORONGNONGRORVESORONORORONOREONGC
ORONO,

will lead to "OLIVIA" being written four times on the message screen. The
character output is ignored by the robot so there is no other effect.

Used often with (7) is the command (:), which leads to a NEW LINE
in the WIZARD's message.

An amusing example of the use of print commands is the Xmas pro-
gram specified in the following printout of the message screen:

138

=
*% %
ER KKK
ok oKk ok
*kkk kR K
PP T T2 T
ook e ook kKoK ok
Aok KK ok kK
o ok ook ook o ok R ok oK
t 3
ok
oAk k
kR Rk
ook ok ok ok
oo ok ok o ok K
sk ok gk o ok ok oK
ke e o ok ook ook ko koK
o o oo o ok ok ok oK ok ook oK ok oK

ax
X X 999 DDDD GGGG
X X 9 9 D D G
X X ===== 9 9 D D 7 G
X 9999 D D 7/ G
X X ==m== 9 D D 7 G GGG
X X 9 D D / G G
X X 999 DDDD / GGG
GGGG N N
G * % *x N N
G / kK NN N
G / *%x *xk N N N
G GGG / koK N NN
G G / * % x N N
GGG / N N

2.8 LOGIN/LOGOUT

The command QQ is the super question - the question that asks the
WIZARD to ask a question.

The WIZARD replies asking who he working for. If the name punched
in is new to the WIZARD, a cheery welcome is given. If the name punched in
reply is the name of someone who had earlier instructed the WIZARD to super
remember (see below) what he had called V, W, X, and Y, then the WIZARD
responds in a cheery way. Here are typical print-outs for the two cases:

139

NEW CHUM:

Q@
HELLO THERE»
WHAT 1S YOUR NAME
CINER
HOW DO YOU DO CINER
I AM THE WIZARD OF 0Z
1 LOVE TO MEET NEW PEOPLE LIKE YOU CINER

OLD CHUM:

Qe

HELLO THERE.

WHAT IS YOUR NAME

HARVEY

WELCOME BACK HARVEY

THE WIZARD REMEMBERS WHAT YOU CALLED V,W,X,AND Y -

Now during a session of 0Z a child will write various programs
using the remember feature. In other words, he will use the labels@ @@
and@as names for various command strings which he has himself written.

The child wants these same programs to be remembered long term - to be avail-
able at the next or a later session. To do so, he calls upon the WIZARD to
Super-remember by punching in

There are two possibilities:

(a) The child has previously punched QQ.
zZZ

O«Ke HARVEY
I WONT FORGET WHAT YOUR V,W,X,Y STAND FOR ecoeeoeWIZARD

(b) If the child punches (Z @ @ , but is now known to the WIZARD,
because he hadn't previously punched @ @ @ , the WIZARD first
asks "WHAT IS YOUR NAME" and waits for a réply before logging out.

After logout, the system still runs, and the last defined @& are still
there. But the WIZARD no longer knows the name of the operator.

2.9 The Abort Feature

A string of commands in 0Z is always terminated by the DO IT
command. Once the DO IT button is pressed, the commands in the string are
carried out in sequence, and the control characters sent by the WIZARD to
ZONKY appear one by one on the message screen, with time gaps between the
appearance of control characters of up to one second. If during this pro-
cess the DO IT button is punched, the control characters appear in a con-
tinuous stream, and the robot ceases to perform.

140

2.10 Etcetera

Numbers and modifiers may be jumbled together in any order ahead
of the command that they modify.

Integers are limited to be less than ten. If this rule is over-
looked only the number furthest to the right is actually valid. Thus (:)
is interpreted as @ . Likewise for fixed point numbers, e
(2) is read as (:) . If no number is present the kindly WIZARD
assumes (:) was intended.

There is a limit of 20 to the number of executions of a recursive-
ly defined command. And one is gently reproofed by the WIZARD if one at-
tempts to call a new command string by other than V, W, X or Y.

On the modifier column of the 0Z keyboard are two unimplemented
modifiers, (:) and . These two symbols, as well as QD , C) :
’ (:) and the blank symbol are all ignored by the WIZARD, unless
preceded by the print command (E%) s

3. EDUCATIONAL ASPECTS

This paper is necessarily a first introduction to 0Z. We offer
here only the briefest of pointers to the way OZ may be used in the primary
and junior secondary classroom to inculcate basic mathematical ideas. How-
ever incidentally OZ serves to introduce the child to the world of comput-
ers. So what does a child learn about computing when exposed to 02?2

3.1 "Little Men".

In order to explain to children the ideas of recursive calls to
procedures in LOGO, Papert et al (Feurzeg et al 1969) introduced the notion
of "little men" as being responsible for each call of a procedure, the flow
of control in a program being pictured in terms of the passing of messages
from one "little man" to another.

A group at XEROX Pao Alto Research Center (Alan Kay 1974) have
recently developed a rather elaborate robotics/graphic system called SMALL-
TALK. In SMALLTALK the idea of message passing is paramount, and in writ-
ing a program one explicitly defines "little men" in terms of what sort of
messages they receive and what the "little man" should do with messages.

In SMALLTALK the "little men" are oganized into classes following the
ideas present in SIMULA (Birtwistle et al 1974).

3.2 Actors.

Carl Hewitt (1975) and his co-workers at M.I.T. have adopted the
"little men" idea to explicate the semantics of computer programming.
Hewitt terms the "little man" an ACTOR. An ACTOR is precisely defined as
an entity with an internal state, which can receive and transmit messages.
Now all programming features (and data structures) may be interpreted in
terms of ACTORS; however making explicit use of ACTOR building blocks
means that one has control over significant program features otherwise
hidden (in a compiler or evaluator). This consideration has lead Hewitt to
the design of the artificial intelligence language PLANNER 73.

141

The same ACTOR concept was earlier and independently developed at
Hewlett-Packard Electronic Research Laboratory (C. Clare 1973) for purposes
of the design of microprocessor logic devices: what Hewitt calls an ACTOR
Clare terms "The General State Machine Module".

3.3 OZ Semantics.

On the message screen of the 0Z system appear messages to and
from the child (user) to the (computer) WIZARD, together with the control
code messages from WIZARD to ZONKY. Thus message passing is a focus of
attention in OZ. The WIZARD is an ACTOR who performs in public!

On the smaller scale in OZ there are four "variable commands" -
which suggestively precede the column C) ‘? on the 0Z keyboard.
In the absence of the modifiers <> and ‘D these commands are highly
modular procedures. However in interpreting the command C) defined by
@ @ @ @ @ one must first read é as @ @ @ Then
each time the "little man" is woken up he takes note - i.e. changes
his internal state. The Little Men of OZ have memories - as does the
WIZARD himself!

3.4 Conclusion and Speculation.

We know from the work of Piaget (1947) that a child acquires
topological ideas before metrical ideas, that topological ideas are in fact
more intuitive, yet it took mathematics three thousand years to "advance"
from Euclidean geometry to topology. And likewise in computing languages -
in their very short history. It seems that only now as we attempt to write
programming languages for children are we learning to describe the truly
basic and elemental ideas of computational mathematics.

Despite the elementary character of OZ the concrete representa-
tion of message passing together with the modular features demonstrate
that OZ actually embodies the basics of computing in accord with the best
current thinking.

Most efforts to teach school children computer languages have
involved teaching subsets of the more old fashioned programming languages.
In contrast 0Z, although designed as a language for "mere" children, prob-
ably has much more in common with the languages and computing styles of
tomorrow.

142

ACKNOWLEDGMENTS

I would like to thank Seymour Papert for the hospitality of the
-~ M.I.T. during 1974, which provided that stimulus which lead

LOGO group

to OZ. 0Z robot ZONKY described herein was designed in conjunction
with Mr. rew Downing. The implementation of 0Z on La Trobe's DEC-10
com was written largely in Algol-60 together with various DEC-10

Mr. Tan Griffiths aided this work by reporting to me his research
undocumented features of the DECUS ARlgol compiler.

REFERENCES

Abelson, H., Goodman, N., and Rudolf, L. (1974): "LOGO Manual" LOGO Memo
No.7, Artificial Intelligence Laboratory, Massachussetts Institute
of Technology.

Birtwistle et al (1974): "SIMULA Begin'", Petrocelli Books, New York.

clare, C.R. (1973): "Designing Logic Systems Using State Machines", McGraw
Hill Inc., San Francisco.
Cohen, H.A. (1976): "The OZNAKL Project: Mini-Robots for Mini-Mathematic-

jans" OZ Working Paper 6, La Trobe University, Bundoora, Victoria.

Dienes, Z.P. (1964): "Mathematics in the Primary School", Macmillan,
Melbourne.

Eastwood, L.F. and Ballard, R.J. (1975) : "The Plato IV CAIL System", J.
Educational Technology Systems, Vol.3, p.267.

Feurzeig, W., Papert, S., et al (1969): "Programming Languages as a Con-
ceptual Framework for Teaching Mathematics", Report No.1899, Bolt
Beraneck and Newman Inc., Cambridge, Mass.

Hewitt, C. (1975): "How to Use What You Know", p.189, Advance Papers of
the Fourth International Joint Conference on Artificial Intelligence,
Tbilisi, U.S.S.R.

Hewitt, C. and Smith, B. (1975): "Powards a Programming Apprentice",
IEEE Journal of Software Engineering, March.

Kay, A. (1974): "SMALLTALK, A communication medium for children of all
ages", Xerox Pao Alto Research Center, Pao Alto, california.

Papert, S. (1971) : "Teaching Children to be Mathematicians Versus Teaching
About Mathematics", LOGO Memo No.4, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology.

Perlman, R. (1974): "TORTIS: Toddler's Own Recursive Turtle Interpreter
System", LOGO Memo No.9, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.

Piaget, J. (1970): "Genetic Epistemology", Norton publishing, New York.

143

