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Summary. It is known that special difficulties are encountered in
devising a wave equation to describe higher spin § > £ particles in inter-
action with the electromagnetic field, and Buchdahl has shown that like
difficulties arise when the gravitational field is introduced. We show
that just as a consistent electromagnetic interaction can be introduced,
g0 wave equations describing charged particles of spin § = § and of
spin 8§ = 2 in a universe endowed with a Riemannian metric can be devised.
The paper incorporates an account of Dirac y matrices in general relativity.

1. — Introduection.

The problem of devising wave equations appropriate to charged particles
of higher spin §>% in an arbitrary universe endowed with a Riemannian
metric is an extension of the problem of devising the flat-space wave equation
for the presence of an electromagnetic field. The difficulties in both cases are
of the same nature: a free particle of higher spin S, in flat space, is described
by a wave function which satisfies some field equation together with a number
of supplementary conditions, so that the wave function has exactly 28 -1 (boson)
or 2(28-+1) (fermion) degrees of freedom (*); on making a « minimal » exten-
sion, to introduce a gravitational or electromagnetic interaction, one finds,

for S>3, that the modified supplementary condition will combine with the

() P. A. M. Dirac: Proc. Roy. Soc., A 155, 447 (1936); M. FiErz: Helv. Phys.
Acta, 12, 3 (1938).
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generalized wave equation to yield further constraint equations, so that two
possibilities arise. Either the wave function will be found o no longer have
the number of independent components necessary to describe a spin-8 particle,
or the particle wave funetion will factor out from the new constraints, which
will thus restrict other fields. These two possibilities are not always distinct,
as shown in our discussion of the spin-3 wave equaticn in Sect. 3.

Just as the problem of introducing an electromagnetic interaction for
higher-spin particles was solved, in the first place by Fierz and PAULI (%),
likewise the more general problem is amenable to selution by methods which
are a natural generalization of the methods used to solve the simpler problem.

In Sect. 2 a brief account of Dirac spinors in general relativity is presented,
attention being focused on what we term spectors—quantities with both vector
and Dirac spinor indices, an example being the Rarita-Schwinger (*) wave
function y,. In Sect. 3 we show that the Rarita-Schwinger equations, on
« minimal » extension, are satisfactory to describe spin-§ particles only in the
absence of electromagnetic interaction and then only if the space is of constant
Riemannian curvature. This result is in agreement with an investigation car-
ried out by BUCHDAHL (*) using 2-component-spinor wave functions.

In Sect. 4 we extend an elegant solution of the electromagnetic interaction
problem given by MoLDAUER and CASE (°) to find covariant spector wave
equations to adequately describe spin-§. The same approach is made to the
derivation of the spin-2 wave equation, which is presented in Sect. 5.

Barring unforseen difficulties, we anticipate that the methods that we use
can be applied successfully to the general problem of devising covariant wave
equations for charged particles of spin 8> 2; however, the computations in-
volved will become exceedingly lengthy.

JounsoN and SUDARSHAN (°) have proved that the Lorentz covariant
theory of charged spin-3 particles cannot be quantized it B, =~ 0. It is of
interest to ask if in the absence of an electromagnetic field, but in the presence
of a gravitational field, our theory of spin § can be quantized; we do not here
investigate this question.

(2) M. ¥F1Erz and W. Pauri: Proc. Roy. Soc., A 178, 211 (1939); a matrix formula-
tion of the spin-§ theory as extended to involve auxiliary spinors is given by S. N.
Guyera: Phys. Rev., 95, 1334 (1954).

() W. Rarita and J. ScHWINGER: Phys. Eev., 60, 61 (1941).

(4 H. A. BucupasL: Nuovo Oimento, 10, 96 (1958); 25, 486 (1962).

() P. A. MorLpavusr and K. M. Case: Phys. Rev., 102, 280 (1956). The account
given of the spin-§ wave equation is correct, but for fermions of spin 8> 2 se
authors postulated symmetry conditions for the wave function which are incons:
with the wave equation.

6) K. Jounsox and E. C. G. SUDARSHAN: Ann. of Phys.. 13, 126 (1961
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2. — Spectors in general relativity.

A covariant quantity with both vector and Dirac spinor idices we shall
refer to as a spector: one example of a spector is given by the set of
four y, matrices, each matrix having one (normal) Dirac index and one adjoint
Dirac index; another example is provided by the Rarita-Schwinger (3) wave
function g, introduced later in this Section. The aim of this Section is to
briefly expound the properties of spectors relevant to our purpose.

In a classic paper INFELD and VAN DER WAERDEN (7) provided the defini-
tive account of 2-component spinors in general relativity; the approach of
these authors could be applied to the parallel problem of Dirac spinors (7).
However, we prefer to follow GREEN (®) and adopt the attractive view-point
that the fundamental geometric quantity is the spector Yur i-6. the set of four
Dirac matrices, the metric tensor 9,, being defined by the relations

(21) Vﬂy’l' +yvy,u:2gpw7

(2.2) (9 21 = 0.

Just as is the case in special relativity, the ring generated by the y, has
just 16 independent elements. One defines the index raising operator g* by

(2.3) G e

so that y*= g*y, ete. A Dirac spinor v 18 specified to be a column matrix
acted on the left by the matrices of the Y, ring, while we use a tilde (™)
to label a Dirac adjoint spinor % . It is postulated that the covariant derivative
of a Dirac spinor is given in terms of the spinor affinity L by

(2.4) Yermln s 209, BT,

where semi-colon denotes covariant derivative, comma denotes ordinary deriv-
ative. The spinor affinity 1", thus must belong to the y . 110g, and is restrained

(") L. INrELD and B. L. VAN DER WAERDEN: Site. Ber. d. Preuss. Akad. d. Wiss.,
9, 380 (1933).

(*) In the paper cited, INFELD and VAN DER WAERDEN consgider only special
representations of the generalized Dirac matrices.

(®) H. 8. GREEN: Nucl. Phys., 7, 373 (1958). This paper contains earlier references.
to the rather limited use that has been made of the Dirac y matrices in general relativity.
Green’s interesting findings as to the dimensions of the irreducible representations of
the p matrices are irrelevant to the present purpose.
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by the requirement that

(25) yl;u T yl.u_F;qu K I:F;Hyl] =0 ’

where [, is the Christoffel affinity

(2.6) FZM == %gw(glg,# i gﬂg,z—gzﬂ,e) .
From the integrability condition

(27) yl.pw 7 yl.vu =0 ’
it follows that the spinor tensor curvature 3,

(2.8) E}{W:TM—E—TH]_;—TV'M—])F

w

is given in terms of the Riemann-Christoffel tensor R,
(2.9) = D, — T
according to the formula

(2.10) [va Rpl= B Ve -

One requires that 9, be a member of the y, ring, so that

(@) R, = — 1R,y —ieF, .

w

On noting that for a Dirac spinor

(212) Vw1 ™ Yiup — Vvsw = — S{WW ’

one is led to the usual identification of (the real part of) eF,, as the product
of the electromagnetic field and the particle charge. The measure of arbitra-
riness implicit in this identification is well brought out when one recasts the
preceding discussion in terms of the generalized Duffin-Kemmer (°) matrices,
to find that in the equation that replaces (2.11) the terms e#,, for inequivalent
irreducible representations are unrelated, so that a spin-one particle might
«see» a different electromagnetic field from that «seen» by a spin-zero par-

®) R. J. Durrin: Phys. Rev., 54, 114 (1938); N. KeEMMER: Proc. Roy. Soc., A
173, 91 (1939).
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ticle. The spector that we use in subsequent Sections for the description of
spin-3 fermions is the generalization of the Rarita-Schwinger wave function, v,
which has the notable property that

(2'13) wl;[;w] R SE[W Y RQ}.HV y)g s

We complete this Section by writing down for future reference some
algebraic formulae

(2.14) vy = vyt 4 29y — 29" y*,
(2.15) B, + B+ By, =0,

Equations (2.14) and (2.15) imply

(2.16) By vty = —2B%,,g"y* = —2B2 ",
from which it follows that

(2.17) RopwV vPy*y = —2B,5,,9%"9” — —2R.

3. — On the R.S. equation.

The aim of this Section is to examine the appropriateness of the Rarita-
Schwinger (3) (R.S.) spector wave equations for the description of particles
of spin $ in a universe endowed with a Riemannian metric. We take the
R.S. equations in the form involving the «minimal extension» of the flat
space equations, interpreting spectors as spectors in general relativity, and
replacing the ordinary derivative by the covariant derivative,

(3.1) G, 0 or O =0 )
One remarks as an aside that this notation for covariant derivatives leads to
no ambiguities as

(3.2) DHVA_VzDu:Vz:u: 0.

The R.S. equations we are to examine are thus simply

(3.3) (¥*D,+m)p, =0,
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together with the supplementary condition

(3.4) yryp, = 0.

It follows from (3.3) and (3.4) that

(3.5) Dry,=0.

Thus, were y, subject to no further constraints, one would deduce that it had
an equal number of independent components in any space, and so served to
describe spin 3. However, such is not the case, for we can combine (3.4)
with (3.3) to produce an additional constraint equation. Starting from the
equation (3.3) one writes down

(3-6) y* (p*D,—m)(y’ D, +-m)p, =0

and uses (3.4) and (2.13) to deduce

(3.7) P Y TR Wa + B 9] = 0,

where R, is-given by (2.11). Using formulas (2.14), (2.16), (2.17) this last
relation becomes

(3.8) LRy — 0T, (y"y" vt + 49"y )y — 2Ry 9, = 0,

whence we determine the new constraint

(3.9) (R# — 260 F" )y 0, — 0 .

Tnis new constraint must be read as a constraint on the gravitational and

electromagnetic fields, otherwise v, has insufficient degrees of freedom. Hence,
factoring out the field,

(3.10) R, = M2)g,,
and
(3.11) G, =0

By reference to the Bianchi identity eq. (5.12) below, it is seen that A(») =
is in fact a constant. Equation (3.10) is the field equation for the gravitational
field when the matter tensor vanishes.
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We conclude that the Rarita-Schwinger equation together with the sup-
plementary condition will serve to describe a spin-3 fermion in a passive gravi-
tational field where the interactions of the fermion on the gravitational field
and on the electromagnetic field are neglected.

The conclusions of this Section are not essentially novel. In the context
of special relativity Frerz and PAULI (3) pointed out that the Dirac-Fierz-
Pauli (D.F.P.) equations for particles of spin § > impose an excessive number
of constraints on the 2-component spinor wave functions if a minimal electro-
magnetic interaction is introduced by the replacement ¢, — 0, —ied ,, F = 0.
BucapaHL (%) has shown that, likewise, the D.F.P. equations for §>3 when
generalized in a minimal manner to an arbitrary Riemann space, are satisfac-
tory if and only if the space is of constant Riemann curvature.

4. — A covariant wave equation for § =32

Rather than postulating separately a wave equation and a supplementary
condition whose compatibility would need to be examined, we seek a single
equation which will entail appropriate supplementary conditions. (In like
manner the Proca-Maxwell equation for massive spin-one bosons entails the
supplementary condition 9,¢* = 0). On taking into consideration the proper-
ties of the y, matrices detailed above, it will be seen that the most general
covariant equation for the R.S. spector ¢, which is of first order in the covariant
derivative and free of terms involving the curvature tensor, the alternating
tensor, or the electromagnetic field is

(4.1) (e, D, - mB,,)y =0,

where

(4.2) A= rg, s Al 0%y ) By vty
and

(4.3) B, =0, + Oy,v,;

A, B, ¢ are scalars which for simplicity we restrict to constant values;
likewise m is taken to be constant, although its re-interpretation as a variable
mass field seems most plausible in a general relativity context ().

It is easy to verify on contracting (4.1) with both D* and y* and compar-
ing coefficients that the term in D"y, can be eliminated from (4.1), and a
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supplementary condition for y*y, can be deduced if (%)
(4.4) A1 B=3ArL AL S0 3dE A
Using these values, one sees upon contracting (4.1) with »* that
(4.5) Dy, =—3[(34 + 1)y*D,—3(@2A + 1)m]y"y, .
Contracting (4.1) with
i [(4 +1)y°D, + m]y*—2(24 + 1) D*
it follows at once that
(4.7) B(A 4 1)pmey”y, = — (A + D" 7" + 349"V V) ¥ay -
This last relation may be reduced using the identities written down in Sect. 2
to give the following supplementary condition consistent with (4.1), and clearly
embodying just as many constraints on v, in any space:

(4.8) [3(4+H)m*— AR+ FAy*F 1Yy, = GRY —ieF¥)y,p, .

The question that does arise at once is what is the significance of the con-
stant A. Now, under the transformation

(4.9) VY T2V Y,
where «== —1, a=~— 1L, our eq. (4.1) is form invariant, but
(4.10) A—>[Q2x+1)4A + Fa]/(e+1).

(learly this transformation is the analogue of a gauge transformation for the
Maxwell field; and in flat space one can readily show (°) that this transforma-
tion serves to mix the two classes of spin-i fields contained in the spector v ,;
thus A has no physical significance, and may arbitrarily be assigned any value
(provided A4 7= — %). This conclusion is confirmed by the analysis of MOLDAUER
and CASE (°) which demonstrated that (in flat space) the magnetic moment
and the electric quadrupole moment of the spin-§ fermion are independent of 4.

Henceforth we take A = —1. Eliminating from eq. (4.1) the term in D*yp,

*) There is a misprint in the corresponding value of B given in ref. (°).
P 19 g
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by substitution therein of (4.5) gives
(4.11) 102D, + might s Dyt syl =0

which is free of terms m y*y*D,y"y,. On contracting this equation with y,
one deduces the subsidiary condition (4.5) for 4 =1. The other subsidiary
condition may be deduced by contracting (4.1) with

(4.12) D, +2my,

the result being of an especially attractive form, Vi3,

LY, %

(4.13) 3mhy, = —y, (B — 1" B® )y, — ey F o vy — 3977 Va) ¥y -

5. — A covariant wave equation for §=2.

The problem of devising consistent (multi-) vector wave equations to des-
cribe charged bosons in an arbitrary gravitational field differs in two points
of detail from the problem of establishing consistent spector wave equations
for charged fermions. First, remembering that by the operator D, we mean
the usual covariant derivative, then

(51) (DyDv _DvD,)(P}. 5 _(Pl;{pw] e R@l/w ‘7’9

(where ¢, is a vector), which is to be compared with egs. (2.11), (2.12): the
electromagnetic interaction for bosons does not enter so naturally, but must
be introduced by the covariant extension

(5.2) 0,~I,=D—ied,,.

The second difference comes about because the boson wave equations are of
second order in the derivative, so that the covariant extension is undetermined
by a constant factor s

(6.3) 8,0, > 1 — LI, + wll, T, =TI, + w(ILIT,—ITIL,) .

Thus arguments based on the concept of « minimal electromagnetic coupling »
cannot strictly eliminate these commutator terms. For spin one the covariant
extension of the Proca-Maxwell equation is

(5.4) H”H}L%—H"UNa—mz%—ie%FW+%Rw(p”: 0,

' 9070



COVARIANT WAVE EQUATIONS FOR CHARGED PARTICLES ETC. 1251
which implies the subsidiary condition
(5.5) mAIl g, = i6(1 + ») B 11, + tex F* @, + »l[ B @, .
In deriving this constraint one uses the following identity for a tensor T,,:
(5.6) (DD — D DHE = 0.
However for the sake of avoiding algebraic complications we have omitted

terms in a »-parameter in the spin-two equation. The wave function to describe
a spin-two boson is taken to be a symmetric tensor

(5'7) (p;w = (‘ply 5
In applying a discussion akin to that used for spin § to fix a wave equation,
one must ensure that the wave equation is symmetric in the two free vector
indices, otherwise additional supplementary constraints will be introduced.
The wave equation is then found to be free of parameters
(5'8> (Hz_m2)(pul_Uqu(pvl_Hlﬁ(pv,u+

+ 30,0101 @y + $129,09% Pop— 59l 0% Pop + HLIL 9 90, = 0 -

On contracting (5.8) with

(5.9) , T [T gt
one deduces

(5.10) migtta = allfl g, .

The other supplementary condition is deduced on contraction with /7, using
(5.10) to find that

(5.11) w2 @, = T¥, IT*1@ 5 + U1 115]9% @y -

In the absence of an electromagnetic interaction (¢F,, = 0) eq. (5.11) may be
reduced using the well-known Bianchi identity (1°)

(5.12) ReE . pEeT peve

(1) See, e.g., C. MoLLER: The Theory of Relativity (Oxford, 1952).
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to the simpler form

(5'13) ngﬂgﬂd = R* Dv¢y1—2R#gv1Dg¢pv +
I RM 'Dvgeo(pga <k g#vR;ygpvl = RMA;V(PW _Ruv;ﬂ.(p'm‘

On the other hand, in flat space one has
(514) mzﬁﬂgpyl S ie(FaBHﬁ + HﬁFaB)((pal_galgm(puv) 0

It is interesting to compare our account of charged spin two in flat space with
that given by FIErz and PAULI (%), who also utilise a symmetric tensor cp;w
but impose the constraint

(5.15) 70 =0

so that to achieve consistent equations a scalar field ¢ must be introduced.
An equation purporting to describe uncharged particles of spin two has been
devised and examined by BUcHDAHL (4). However our general equation which
can be specialized to these two limit situations, has moreover been devised by
the same procedure that was applicable to the spin-3 problem; barring unfor-
seen difficulties we anticipate that the procedure will prove adequate to specify
wave equations to deseribe particles of any spin.

I would like to thank Prof. H. A. BucHDAHL for directing my attention to
this problem, and I acknowledge a useful discussion with Prof. H. S. GREEN.

RIASSUNTO (9

E noto che sorgono particolari difficoltd quando si vuole impostare un’equazione
d’onda che descriva particelle di spin superiore o uguale a 3 interagenti con un campo
elettromagnetico, ¢ Buchdahl ha mostrato come simili difficoltd sorgano anche quando
si introduce un campo gravitazionale. In questo articolo si fa vedere che come si pud
introdurre una interazione elettromagnetica coerente, cosi si possano trovare equazioni
d’onda descriventi particelle cariche di spin S=32 o S=2 in un universo dotato di
metrica Riemanniana. Nell’articolo si includono considerazioni sulle matrici y di Dirac
in relativitd generale.

(*) Traduzione a cura della Redazione.
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KosapunanTHeIle BOJIHOBbIE YPABHEHHS
IJI 3apSKeHHBIX YaCTHI[ C BBICIUMMM CHHHAMH B NPOU3BOJIbHOM I'PABUTALHOHHOM noJie,

Pesrome (¥). — M3BeCTHO, YTO OCOOBIE TPYAHOCTH BCTPEYAIOTCS IIPH BHIBOAC BOJTHOBOTO
ypaBHEHHs Ui OIMCAHWSA YacTHL C BBICHIMME CIHHAMUA S>3, B3auMOJEHCTBYIOIIUX C
HIEKTPOMATHUTHEIM IIOJIEM, ¥ ByKIaxir mokasai, YTO aHAIOTHYHbIE TPYJTHOCTA BOSHUKAIOT,
KOTZa BBOAUTCS TPABUTALIOHHOE IOJIe. MBI IIOKa3bBacM, KOrjga MOXKET OBITh BBEIECHO
COOTBETCTBYIOIIEE DIIEKTPOMArHUTHOE B3aMMOMEHCTBUE, TaKkKe MOTYT OLITH BBIBEICHBL
BOJIHOBBIC YPABHEHHS, OIUCBHIBAIOIIUE 3aPSDKCHHBIC YacTHIBI CO CIIMHAMH S=% m 8S=2
Bo Bcenennoif, mMeromelt pmManoBy MeTpuky. CTaThs BKIIOYaeT ONMCAHMEC MATPHI
Hupaka y B 00mell TeOpUM OTHOCHTSIIBHOCTH.

(*) Iepesedero pedaryueit.
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