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The Iterative Function System [IFS] for encoding images 
has been recently developed by Barnsley, Demko and co-
workers as a byte-efficient encoding of complex images. 
The utility of this encoding for purposes of image 
analysis is discussed. Transformation laws for IFS 
descriptions are developed, and ambiguities due to 
symmetry effects are described. 

Introduction  

Following their early success in the utilisation of IFS to 
describe fractals, Barnsley and Demko mounted an 
investigation of the applicability of the IFS scheme for the 
description of arbitrary shapes. Central to the (general) IFS 
has became what they refer to as the collage theorem: the 
notion that if a figure can be "lazy tiled" with sufficient 
accuracy by smaller copies of itself at various orientations 
(contraction mappings) then the figure can be generated 
to satisfactory accuracy by the IFS scheme. In a series of 
recent papers Barnsley, Demko and their co-workers have 
proposed a method for the description of arbitrary images 
through an encoding of image segments by means of sets 
of contraction mappings and associated probabilities, 
which they term the IFS (Iterated Functions System) 
description. From an IFS description, each segment can be 
reconstructed by a stochastic process by applying each 
mapping at its associated probability. This reconstruction 
process (image synthesis from IFS parameter description) 
lends itself to parallel implementation on processor 
networks, so that the decoding process is computationally 
tractable. By encoding manually real-world scenes, 
Barnsley, Demko, et al have shown that compressions 
from 2000 to 10,000 can be realised with acceptable 
accuracy. Barnsley and Demko have reported that work is 
proceeding on the development of an automated system for 
IFS encoding. With the promised availability of such 
highly compressed IFS images, the need to examine the 
practicality and difficulties of the use of IFS encoded 
images for computer vision and image processing becomes 
urgent. It is worth noting that one of the motivations that 
Barnsley and Demko offer for the development of the IFS 
encoding is that highly compressed images will be more 
suitable for computer vision. 

In this paper problems and issues related to the use of IFS 
encoded images for 2-D recognition purposes are 
discussed 

In the next section a general introduction to Iterated 
Function System [IFS] theory is presented. The following 
section is devoted to examples that demonstrate the non-
uniqueness of IFS encoding. The following sections 
explore the problem of establishing that two IFS 
description do in fact describe the same segment at different 
orientations and location. We consider the comparision of 
two apparently different IFS parameter sets, with the same 
number of parameters. There are two questions vital to 
image analysis applications: 
(a) Do the two IFS descriptions refer to the same object 

at the same location? 
(b) Do the two IFS descriptions describe the same object 

at different locations (or congruent objects )? 
The conclusion offers an overview of the future scope of 
IFS in image analysis. 

Iterated Function System  

Basic Theory of IFS 

Informally one can define fractals as figures of which any 
fragment is similar to some fragment of any magnified or 
reduced scale version of itself. Deterministic fractals, 
such as the Hilbert curve and the snowflake curve had 
been known since the late nineteenth century: 
such deterministic fractals show precise self-similarity at 
all scales. Mandelbrot[1], in his provocatively entitled 
opus, The Fractal Geometry of Nature extended the 
notion of fractal to include stochastically modes of 
generation. 

The classic means of generation of fractals curves is by 
mapping the motion of a point which transverses the 
entire curve. In contrast, Barnsley and Demko [1] 
presented a means for global description of fractals 
which they termed the Iterated Function System (IFS) 
scheme. 
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The formal description of IFS is simplified by 
constraining attention to a system of unit dimensions, 
with 05x5..1, 0y5..1. Thus the usual pixel coordinates 
have to be replaced by the appropriate rational fractions, 
although extending particular formula to resealed 
coordinates is straightforward. 

IFS descriptions utilise contraction mappings such as W 

given by: 

 

where 0< 1 ad-bc I <1 . An Iterated Function System is a  
set of such transformations, each with an associated  
probability: [Wi,pi | i=l..N,) where the sum of the N 

probabilities pi is one. Note that an IFS description 

involving N mappings is specified by 7N parameters. An 
IFS set provides a compact description of what can be a 
highly complex image region. 

For later reference, we note that such a W has an associated 
contractivity equal to the absolute value of the largest 
eigenvalue of its matrix part. The entire IFS has a 
contractivity index equal to the maximum contractivity 
of the N contraction mappings W involved. 

The process whereby an image region can be synthesised 
from an IFS parameter set is a stochastic iterative 
procedure, termed by Barnsley [6] 'random iteration'. The 
algorithm is: 
From an arbitrary start point, traverse about the image by 
the repeated application of one of the contraction 
mappings: at reach iteration the choice of mapping 
utilised is purely random, with fixed probability. After 
the first fifty (or so) iterations, each pixel visited is 
marked; after some 1000 or so iterations, the set of 
marked pixels constitutes the attractor of the IFS. 
The convergence of this random iteration process is 
independent of the starting point. Beyond a certain number 
of iterations, the marked regions does not alter. 

For completeness it is noted that instead of applying the 
random iteration process described above to generate the 
attractor of a set of contraction mappings, the same 
attractor can be generated by a deterministic process 
somewhat akin to Conway's Game of Life. In the 
deterministic algorithm[6], a set of marked pixels 
constitutes one generation, and the deterministic algorithm 
determines how one generation is formed from the 
preceding generation. The algorithm specifies that each 
marked pixel marks those pixels in the next generation 
that it can be mapped into by ANY of the N 
transformations of the IFS. The next generation is thus 
determined by applying all the IFS transformations to all 
the marked pixels of the old generation. The process is 
then repeated until convergence (or approximate 
convergence) when the new generation is identical to the 
old. The availability of two such different algorithms is of 

much interest in the evolving theory of distributed and 

parallel computing; see Cohen [7] 

Collage Theorem for IFS 
Traditional fractal figures can be recognised as having 
components which are derived by contraction mappings on 
the entire figure. This feature of fractals, their self-
similarity, does rather naturally lead to an IFS description 
if one seeks to give a global description of a fractal. 
However, Barnsley and co-workers [3][4][5][6] found that 
an IFS description of an arbitrary figure can be determined 
by means of what is termed the Collage Theorem. This 
theorem considers an operation of lazy tiling, where a 
figure is covered by contracted and rotated copies of itself, 
the covering being lazy in that the copies used for tiling 
may overlap, but the tiling needs to be as good as possible 
in covering and not overlapping the boundaries of the 
figure. the IFS scheme rests on the Collage Theorem 
::If a set of mappings lazy tiles a figure with N copies 
of itself, then the corresponding IFS system, with 
probabilities proportional to the contraction ratio utilised 
by each mapping is a satisfactory description of the 
figure. The departure from an exact fit is given in 
terms of a Hausdorf metric. This metric specifies the 
distance between two sets A and B as the maximum, for 
points in set A, of the minimum distace between a point 
in A and any point in B. For simple closed figures the 
Hausdorf metric agrees with natural definitions of the 
distance between two figures. Consider the following 
example. 

 

Set A 
The Hausdorf distance between the sets A and B is 
computed as the maximum of d(A,B) and d(B,A), where 
d(A,B) is the maximum, for any point in set A, of the 
minimum distance to any point in set B. d(B,A) is 
similarly defined The Hausdorf distance is a direct measure 
of the (maximal) non-overlap of the two sets, and is a 
natural "difference" measure. 

What has been proven (by Barnsley et al [6]) is that if a 
figure differs from a lazy tiled copy of itself by d, then an 
IFS representation will generate that figure with Hausdorf 
distance error of just d/(1-s) where s is the contractivity 
index of the IFS set. 

So far in the above discussion it has been presumed that a 
given figure described by IFS has a uniform grey scale. 
However, if the figure is generated by the random 
algorithm, there is a flexibility in adjusting the 
probabilities so that the gray scale assigned to a figure is a 
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measure of the number of times a pixel has been visited. 
Of course, once gray scale is used as a measure of 
likelihood of pixel encounter, further "underlaping" 
collages may be added to the set to fully map the gray 
scale contouring. 

Non-uniqueness of IFS 

In assessing the potential application of IFS to computer 
vision and image processing, one needs to ask Is an IFS 
encoding unique? We demonstrate below that IFS 
encoding is not unique. The following question then 
arises: Can a particular automated procedure for IFS yield 
a unique set of parameters.? We cannot answer this 
question, as there simply is not an automated procedure for 
IFS encoding. However we point out that in recognition of 
2-D shapes one is faced with the task of comparing figures 
of differing locations and orientation. A basic need is to 
develop means of making such transformations of IFS . 
To that end a new result showing how to verify the 
identity of two sets of IFS parameters of the same size is 
given. 

The major aim of this section is to illustrate different ways 
in which an IFS description of a figure may be non-
unique. To keep the discussion as simple as possible, the 
figure concerned is in fact the entire unit square, for which 
there is an IFS description, which provides also a natural 
(trivial) illustration of the collage theorem. A natural way 
of lazy tiling the unit square is to decompose it into four 
equal squares, with no overlap: 

/2 

The transformations that map the whole square into each 
of these four regions are W1 ,W2 ,W3, W4 , where 

 

  

 

According to the Collage Theorem, the IFS parameter set  

is just { Wi,pi | i=1..4,) where each probability pi = 

0.25. Each transformation involves six parameters, and 

coupled with each transformation is a probability, so that 

there is a 28 parameter in this IFS description of the unit 

square. Note that as the Hausdorf distance between the 

union of the four quadrants and the unit square is zero, the 

IFS description has zero error. 

In the following sub-sections we show give various 

alternate IFS descriptions of the unit square which are 

based on non-overlapping collages. 

Non-uniqueness due to Symmetry 
This first example of non-uniqueness arises due to the 

rotational symmetry of a cube. During the lazy tiling, one 

may accordingly rotate the first cube through any multiple 

of 90 degrees before laying in the first quadrant. Thus in 

place of the Wi used above any of the following three 

contraction mappings may be used: 

 
The three mappings W1A W 1B  W 1C are in fact of the 

form of the transformation W1 followed by a rotation 

about the centroid of region 1. The measure of non-

uniqueness revealed here is an immediate reflection of the 

rotational symmetry of the square. 

Alternate Collage I  
Consider the following partition of the unit square into 

four sub-regions 1,2,3 and 4.:   
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In this alternate collage of the unit square, mappings for 
IFS scheme are the linear maps that map the unit square 
into the four sub-regions 1,2, 3, and 4. These mappings 
are W1, W2, W3, W4 as given by the formulas: 

 

An IFS description of the unit square is thus (Wi, pi | 

i=1..4) where each pi is equal to the area of the 

corresponding rectangular segment, e.g. p1= q
2
. 

Note that by taking into account the symmetry of the  
square segment 1, one might replace the Wi  above by one 

of the following transformations: 

 
Similarly, alternate transforms are available replacing the 

W3 above, as segment 3 is also square. Both segments 2 

and 4 being rectangular, they are invariant under rotation 

by 180 degrees, as expressed in an alternate W2: 

 
A similar alternate is available for W4. 

 

Alternate Collage II 

In the previous subsection an alternate way of tiling the 
unit square with four tiles was given. This is only part of 
the story of non-uniqueness due to alternate collage. 
Consider, for instance, the decomposition of the unit 
square into nine rectangles, as per the figure below. 

It is essentially trivial to write down an IFS  

representation: (Wi,pi | i=1..9) with pi = 1 / 9, Wi being 

the contraction transform that maps the unit square into 
sub-square number i. 

7 8 9 

4 
 
5 

 
6 

1 2 3 

 

IFS Transformation Law 

Suppose a particular IFS set is assigned to one image 
segment, and there is another segment, identical, but 
suffering translation and rotation, in the same (or other) 
image. How may an IFS parameter set for the second 
segment be derived from the first? That is, there are two 
identical instances at different orientations as well as being 
separated by a translation. The mapping from points in the 
first object to corresponding points in the second is given 
by an Euclidean transform: 

 

where R is an orthogonal matrix, f is an angle of 

rotation, and (a,b) is a displacement. Then if an IFS 

representation of the first object is given by (Wi,pi | 

i=1..N}, an IFS representation of the second is given by  

(Vi,pi | i=1..N } i,e., with the same probabilities, but 

with transformed contraction mappings Vi, given by 

Vi = E-1 Wi E for i = 1, N 

where the inverse of E is defined as the transformation: 

Identification Scheme  

Consider an image object (segment) described by a 
particular IFS description: (Wi,pi | i=1..N). In another 

image a potentially identical object is described by the IFS  

system, {Vi,qi | i=1..N}. How is one to determine whether 
the same object is present in the two images? It is 
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assumed that in both IFS descriptions the same number of 
transformations are involved. The comparison involved 
is greatly simplified by the recognition that the 
determinant of the 2*2 matrices involved are invariant 
under the Euclidean transformation deduced above. Hence 
the first step in determining identity is determining 
whether the set of determinants of the two IFS systems are 
to some accuracy, identical. If the set of determinant values 
are non-degenerate, so that there is a unique mapping 
between one set and the next, then the identification task 
becomes the relatively straightforward task of determining 
the unique euclidean transform that can effect all the 
transformations. 

Discussion  

The remarkable data compression possible using the IFS 
has been demonstrated by the encoding using IFS of 
realistic scenes from the magazine National Geographic: 
[5],[6]. The actual encoding however was performed 
manually, after segmentation. These published examples 
clearly show gray scale and colour encoding via subtle 
graduations of colour on flowers and leaves for example. 
Data reduction even as high as 1000 to 1 have been 
reported in some examples. 

In order to use an IFS description of an image segment(s) 
for recognition purposes one must have means for 
identifying with a template of some sort. In this paper a 
careful analysis of the capabilities of the IFS was 
performed. It was shown that IFS descriptions are 
ambiguous, and not immediately useful in general for 
recognition purposes. Some ambiguities in IFS 
descriptions are related to features of the Euclidean 
Group in two dimensions, as shown in the examples 
above. There is further ambiguity where spatial symmetries 
of an image segment admit alternate collages, as we 
demonstrated by an example. 

The major data compression available using IFS encoding 
of images does not lead immediately to advantages for 
image analysis unless methods are developed for 
performing what are by now classsic operations of image 
analysis. In this paper attention has essentially been 
directed at the potential direct use of IFS encoding to 
identify image segments and objects. I have shown here 
the problems of non-uniqueness that arise in the simplest 
case where one is dealing with identically sized sets of IFS 
parameters. 

Further problems of non-uniqueness arise where the IFS 
encoding has served to encode gray scale (or colour) as 
well as segment area. For example, the researcher may 
wish to somehow delineate a region of gray-scale range 
that lies within the regions described by two IFS 
parameter sets. How to do so without first synthesising 
the whole image and applying traditional techniques is not 
clear. 

To apply IFS to general object recognition problems, will 
require the development of identification schemes linking 
IFS descriptions of objects viewed at different 3D 
perspective. This more general "identification" problem is 
clearly difficult, but some elaborated theory will be 
necessary if IFS description is to have other than a narrow 
role in image analysis. 
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