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ABSTRACT

This paper describes a methodology termed TEXSCALE
for texture analysis.This hierarchical approach is based on
the group method which aims to group different textures
into super-classes and determine whether a texture belongs
in a particular texture super-class in conjunction with a
mask tuning scheme to characterize texture features. Un-
like the traditional two-step classification operation involv-
ing feature extraction followed by classification rule con-
struction, our aim has been to introduce the texture energy
computed using texture ‘tuned’ masks to directly function
as a classifier in a single stage. An evaluation study of
TEXSCALE classification scheme has been taken via con-
fusion matrix, which examines the extent to which arbi-
trary texture samples drawn from the total set of sample
textures in two seperate studies can be correctly assigned
to the classes (15 in the study). One involves 360 samples,
the other involves 1440 samples.

1. INTRODUCTION

Texture is a vital element in segmenting images and in-
terpreting scenes. Caelli and Reye[1] have proposed a sin-
gle unified procedure which integrated colour, texture and
shape as features for the vertibrate visual system.

Traditional approaches to texture analysis involves ex-
tracting texture features to constitute a feature space and
then performing stochastic search within this feature space
to determine a complex classifier[2]-[8]. This general de-
scription of classifier operation in fact encompasses neural
net classification.

Unlike the usual approaches involving feature extraction
and classification rule construction, the special interest of
our proposed method is to determine a feature, the texture
energy computed using texture ‘tuned’ masks to directly
function as a classifier in a single stage by extending both
Laws’ texture energy concept[9] and Benke et al’s mask tun-
ing scheme[10],[11].

The simplicity and roubustness of computation of the de-
rived features of rotated and/or scaled textures by means
of our mask tuning scheme has been reported in our pre-
vious papers[13], [14]. This paper is concerned to recount
an experimental study where the TEXSCALE methodol-
ogy has been applied to multi-scale and multi-orientation
texture classification. The mask tuning scheme for TEXS-
CALE feature extraction is summarised in Section 2 while
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the basic concepts of the group method for implementing
the hierarchical approach is briefly outlined in Section 3.
The simplified classification procedure in TEXSCALE is
detailed in Section 4 and the experimental results for this
study arc presented in Section 5.

2. TEXTURE FEATURE EXTRACTION OVER
MASK TUNING

TEXSCALE involves the determination of texture class
‘tuned’ mask which when applied to a textured image
smooth out regions of common texture so that the variance
of the convolved image, typically over a 15 % 15 local win-
dow. is (a) reasonably constant over all locations within a
region of uniform texture, so that such a region is essentially
converted into a region of uniform gray scale, (b) markedly
different in value between regions of different texture.

The approach reported here is an extension of the work
of Laws and Benke et als. Note that Laws’ approach was
limited by the use of a fixed set of masks and Benke-Skinner
introduced and applied the adaptive mask concept. The
authors have further revised this methodology in a series
of papers, which lead to satisfactory segmentation of as 15
distinct textures using a single mask. In our approach the
local variance after convolution is well-approximated the
sum of squared values of convolved image within the test
window, which is expressed as below:

ZVVI ZVVy (I * A)zrs

Pl = P2W, W,

where the rs sum is over all pixels within a square window
W of size 11, * W, centered on the pixel at ¢, 7, A is a zero
sum “tuned’ 5% 5 convolution mask and P is the parameter

normalizer P? = Zr,j (441',1')2-

3. TUNING MASKS IN THE HIERARCHICAL
APPROACH

The problem of texture class classification is to find a way
of assigning a new texture sample on the basis of a set of
measurements to one of a number of possible classes. In
this section we show that the conventional two-step proce-
dure by feature extraction and a classification rule selection
can be merged into a one-step scheme by introducing the
concept of a global texture classifier using a ‘tuned’ mask.

The group method requires in the hierarchical approach
a single mask to be tuned so that within each texture class,
dispersion of the texture energy (TF) is minimal, while the
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dispersion between classes is maximized. At the same time,
it is useful to attempt to restrain the TE to be linear in the
numeric rank of the textures. We use figures of merit for
mask tuning of the form D = XY/Z, where X is the well-
known expression for the regression of the least-squares line
of best fit line (z, f(z)) through the points (z, TE(x))

S (TE(2)§(2))?
Yo ey e

while Y and Z are measure of inter and intra dispersion
respectively:

X =

ABS(TE(z,sx,rx)~TE(y,sy,ry))
TE(z,sz,rz)+TE(y,¢y,ry)

Y = min{

{ ABS(TE(z,sz,rz)=TE(z,¢y,7y)) }

Z= fax TE(z,sz,sx)+TE(x,sy,ry)

where sz, sy refer to different scales, rz, ry refer to different
rotations while z,y refer to different textures in the given
texture set, and TE(z, sz,rz), TE(y, sy, ry) represent {he
texture energy with certain scale and orientation.

Mask tuning is performed by a combination of random
search techniques through the space of mask coefficients.
used in combination with dynamic reordering of texture
ranking, see [13]. To simplify the process a re-ranking pro-
cedure is applied to the two-dimensional texture set in train-
ing so that all the texture samples in each trial are ordered
in the monotonically increasing sequence of classifier value.
Thus for each mask a sorting procedure is called to rank
all the texture samples of the given texture set: different
textures are linked and ordered from top to bottom while
texture samples of one texture in different cases are linked
and ordered from left to right, (See Figure 1).
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Fig 1: Linked list data structure used so as to permit
flexible data entry and handling which facilitates the
re-ranking of textures into super-classes
Note that the groups are not the same size

4. THE CLASSIFICATION PROCEDURE

In this section we outline the supervised recognition ap-
proach utilized in TEXSCALE, and a block diagram show-
ing our system is presented in Figure 2. The TEXSCALE
classification is performed in two stages. The first stage is
the training phase where a ‘tuned’ mask is determined for
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the linked rotated and/or scaled textures. Such an adap-
tive mask can be obtained by maximizing the proposed fig-
ure of merit ) = XY/Z described in Section 3 with the
guided random search algorithm introduced in [13]. Using
this “tuned’ mask, a set of texture energies TE correspond-
ing to each texture sample in the training texture album
are determined. A range-plot is utilized to indicate how
packed the texture energy TE is between members (repre-
sentatives of the same texture under different orientation
and scale conditions) of each texture category. The second
stage is characterized as the classification stage, where an
unknown input texture sample is recognized as belonging
to a particular category in the texture album irrespective
of scale and rotation. The classification is based on a dis-
tance rule which measures the difference between the global
texture encrgy T'E of the test image and the reference val-
nes T'E, in the range-plot of the training album. The tex-
ture is classified to the category for which such a distance
| 1"/ — 1T'F, | /TE; is minimum.

Two sets of experiments are designed for the classifica-
tion purpose. In the first set, the training texture album
consists of all the possible test samples, and indicates that
the classifier “sees” instances of each texture under each con-
dition. T'he minimum distance Judgement will be directly
used to classify the individual input texture samples.

In tlre sccond set of experiments it was expected that the
test samples not included in the training set could be de-
tected as a new category. The key issue is how to identify
the category as new. The implementation can be summa-
rized in four steps:

Step 11 Determine the center of the existing category
based on their range-plot produced in the training stage:

TE: =TEiow) + (TEitnigny — TE(10w))/2
where 1L, and T'Ej(higny indicate the boundary of the
texture cnergy distribution of the corresponding category.

Step 2o Determine the worst relative error A of the train-
g set:

TASE— II]HX,{(TE,‘(/HQ/,) = TE,([O,E))/TE{}

Step 30 Clalculate the relative error 8; of the input test
texture sample T'E and the existing traind categories TE;
i the traing set:

& =(|TE ~TE: |)/TE;

The minimum relative error § = min;{6;} is then used as
reference for classification in the next step.

Step 4 Determine the category of the input test sample
by comparing sample’s minimum relative errors § with the
svstem worst error A: The sample is classified as new if § >
AL otherwise the sample belongs to the existing category
corresponding to the minimum relative error.

5. EXPERIMENTAL DESIGN AND RESULTS

Two sets of experiments were completed to assess the clas-
sification effectiveness of TEXSCALE. We used 15 differ-
ent Brodatz textures, with a scale range (1) = 192,
(2:1)° and a rotation range 0°, 45°, 90°, LEER5% ) Ble
samples in the training set are histogram equalized and of
256 % 256 size. In the first set, the training texture album
consists of all the possible test samples, and indicates that
the classifier “sces” instances of each texture under each con-
dition. In the second set of experiments it was expected that




the test samples not included in the training set could be
detected as a new category. Fig 2 lists the ‘tuned’ masks
for the above two sets of classification . M;s was tuned in
the first set to discriminate over variants of 15 Brodatz tex-
tures, while Mg was tuned in the second set to discriminate
over variants of just 8 textures.

The test samples are of four size (512 % 512, or 256 * 256,
or 128 x 128, or 64 x 64) with three scales and orientations.
Therefore, for the first experiment there are 36 test samples
of each texture category including all the possible image
sizes, scales and orientations. The classification was per-
formed using mask M;s and the result is shown in Fig 3
in the form of a confusion matrix. The diagonal row shows
how many samples out of 36 test samples for each category
were correctly classified. Classification rates for individual
categories are listed to the right of each row. Ten of the
classes are classified with 100 percent accuracy. The classi-
fication results of the other five classes are 96, 80, 78, 66 and
58 percent, respectively. The misclassification of test sam-
ples is due to the very close distance differences of texture
energy TE between some samples.

In the second experiment there were 96 test samples of
each texture superclass. The mask Mz (above) was used.
but test samples were drawn from the 8 classes trained ou,
together with the other 7 classes available: A sample was
either assigned to a class according or classified as new.
The classification result is shown in Fig 4 in the form of a
confusion matrix.

6. CONCLUSION

TEXSCALE was conceived as a scheme for the hierarchical
classification of texture, so that a texture taxonomy could
be applied where in the first stage it is determined to what
texture class a particular texture sample (or small window
into a texture collage) belongs, while in the second stage
the actual membership of the texture in that class is de-
termined. More generally, there could be further stages of
hierarchical classification. Here we have been concerned
with an evaluation of the first stage. The capability of the
second stage refers solely to the capability of differentiating
individual textures within a single class which was estab-
lished in our earlier work involving texture tuned masks.

In our experiments, the texture classes have comprised
the rotated and scaled variants of 15 Brodatz textures.
Hence what was established can be interpreted as provid-
ing a rotational and scale invariant texture classification
system. In our previous papers detailing the methodology
presented here, where the focus was on segmentation capa-
bility, that particular interpretation of our experiments was
presented. However, in presenting for the first time the data
given here on classification/misclassification, we must stress
that at the same time the basic concept of TEXSCALE
has been established for these particular classes. Future
work is planned to involve investigation of the capability of
TEXSCALE with regard to the hierarchical classification of
model-based textures.

REFERENCES

[1] T.M. Caelli and D. Reye, “On the classification of im-
age regions by colour, texture and shape”, Pattern

12
3

(11]

[14]

V-395

Recognition, Vol. 26, No. 4, April, pp. 461-470, 1993.

R.NL Haralick, “Statistical and structural approaches
to texture”. Proc. IEEE, 67, pp. 786-804, 1979.

R.L. Kashyvap and A. Khotanzad. “A model based
method for rotation invariant texture classification”,
TIELL Trans. Pattern Anal. Machine Intell., Vol.
PANI-8. pp. 472-481, 1986.

J. Mao and A. Jain, “Texture classification and seg-
mentation nsing multiresolution simultaneous autore-
gressive models™, Pattern Recognition, Vol. 25, No. 2,
1992, pp. 173-188.

M. Pictikainen. A. Rosenfeld, and L.S. Davis, “Experi-
ments with texture classification using averages of local
pattern matches™, IEEE Trans. Syst., Man, Cybern.,
Vol. SMC-13. pp. 421-425, 1983.

M. Unser. “Local linear transforms for texture mea-
surements”, Signal Processing, Vol. 11, pp. 61-79, 1986.

1. Wechsler and T. Citron, “Feature extraction for tex-
ture classification”, Pattern Recognition, Vol. 12, pp.

301-311. 1980.
1.5 Weszka, C.R. Dyer and A. Rosenfeld, “A Compar-

ative study of texture measures for terrain classifica-
tion”. [ELEL Trans. Syst., Man, Cybern., Vol. SMC-6,

pp. 269-285, 1976.

K. Laws. “Textured Image Segmentation”, Ph.D
Thesis. University of Southern Clalifornia, January
[980).

IN.IX. Benke and D.R. Skinner, “Segmentation of vi-
sually similar textures by convolution filtering”, The
Australian Computer Journal, Vol. 19, No. 3, pp. 134-
138, 1987,

K.N. Benke, D.R. Skinner and C.J. Woodruff, “Convo-
lution operators as a basis for objective correllates for
texture perception™, IEEE Trans. Syst., Man, Cybern.,
Vol. SMC-18, pp. 158-163, 1988.

P. Brodatz, Textures: A Photographic Album for
Artists and Designers, Dover Publications, New York,
1966.

I.A. Cohen and J. You, “A multi-scale texture classi-
fier based on multi-resolution ‘tuned’ mask”, Pattern
Recognition Letters, Vol. 13, Number5, 1992, pp. 599-
GO,

1. You and H.A. Cohen, “Classification and Segmen-
tation of Rotated and Scaled Textured Images Using
Texture “Tuned’ Masks”, Pattern Recognition, Vol. 26,
No. 2. Feb., pp. 245 - 258, 1993.

R. Picard, “Finding similar patterns in large
databases”. Paper WA2.1, Proc. of IEEE ICASSP’93,
April 27-30, 1993, Minneapolis, Minnesota.

C'Y.C" Bie, H.C Shen and D.K.Y Chiu, “Hierarchical
maximum entropy partitioning in texture image analy-
sis”. Pattern Recognition Letters, Vol. 14, pp. 421-429,
1993,



19 -11 -32 15 9 40 49 26 —52 -—-63

3355748 =23 0 =58 42° 37 39 —48 =70

My = =24 Fe= 65 1] Mg = 07 =76 - B2 milgis g9
—-12 6:=~10% 29+ —13 S0 81 -52 —69 —40

-25 1 10 40 -26 315 o2 200 LoBdes =42 51500

Fig 2: New ‘tuned’ masks as computed

Texture Sample Assigned Class Classification

1. 2. 3. 4. 5. 6. 7. 8 9.10. 11. 12. 13. 14. 15. Rate %

1. calfd24 a6 100
2. canvd20 34 2 96
3. canvd21l 36 100
4. corkd4 36 100
5. grassd9 36 100
6. paperd57 21 12 3 58
7. pebbled54 36 100
8. pigskind92 36 100
9. raffiads4 3 24 9 67
10. sandd28 36 100
11. sandd29 36 100
12. strawdl5 36 100
13. wired6 2 6 28 78
14. wired14 g 1 29 80
15. woold19 36 100
Total 92
Fig 3: Confusion matrix showing the class assignment accuracy for the 540 texture samples
Texture Sample Assigned Class Classification
1. 2. 3. 4. 5 6. 7. 8 9. 10. 11. 12. 13. 14. 15. new Rate %
1. calfd24 g 100
2. canvd20 4 2 90 93
3. canvd2l & 100
4. corkdd 5 88 2 91
5. grassd9 5 14 12 1 |64 68
6. paperd57 5 80 11 83
7. pebbled54 - 2 23 2 68 60
8. pigskind92 1 4 2 11 78 81
9. raffiads4 4 92 96
10. sandd28 96 100
11. sandd29 1l 14 18 53 55
12. strawdl5 96 100
13. wired6 96 : 100
14. wired14 5 8 8 75 77
15. woold19 96 100
Total 88

Fig 4: Confusion matrix showing the classification accuracy with untrained texture classes
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