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ABSTRACT 

In this paper a simple scheme of map colour is introduced for the colour rendering of IFS fractals. The way 

of incorporating it into Barnsley's random iteration and versions of Hutchinson's deterministic algorithm is 

detailed. Examples are presented showing an elegant  stylised colouring of such fractals as the Barnsley Fern 

and the Sierpinski gasket that provide attractive motifs for visualization purposes. 
 

ITERATED FUNCTION SYSTEM FRACTALS 

The category of fractals we are concerned with is that of deterministic fractals mathematically specified as 

the 'attractor' of a set S of  N contraction maps such as W
i
 (i =0..N-1) : with 
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See {1][2][3][4][5]. For the case where the contraction maps are affine transformations, as per 
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where (x,y) is the co-ordinate pair of a pixel in the plane. The nomenclature was introduced by Barnsley et al 

[3][4] of referring to the set of transformations as an IFS [Iterated Function System], although in his recent 

book [5] Barnsley also uses the term IFS to refer to general sets of contraction maps.  
 

In this paper we describe formally a mapping scheme called map colour, and first give a global appreciation 

of how it serves to map subsets of an attractor. Then we present practical schemes for applying this colour 

rendering in conjunction with various algorithms for generating IFS fractals. 
 

MAP COLOUR SYSTEM - GLOBAL PERSPECTIVE 

In this section a mathematical perspective of the IFS set colouring is outlined that depends on attributing a 

number colour, colour(r) to map W
r
  from the IFS Set. Formally the attractor  A(S) , is the (closure of the) 

set of points invariant under any finite composition of maps from S,  This implies that  

  W
r
  [A(S) ]    A(S)    

So that   A(S)   may be expressed as the union 

W
1
  [A(S) ]W

2
  [A(S) ]... W

N
  [A(S) ] 

The simplest version of the fractal colouring scheme to be introduced involves associating a colour with 

each mapping, so that each subset of the attractor has a distinct colour:      W
r
  [A(S) ]    has colour (r). 

Where the W
r
  [A(S) ]  are disjoint the colouring so induced is unique. In general, however, these sub-sets 

are not disjoint, and we specify that a given pixel is given a colour depending on a ranking of the possibly 

more than one colour that can be attributed to it. 

The above colouring scheme is here termed one-level colour. This is just the start of the colouring scheme. 

With more elaborate formalism, the attractor A(S)   may be expressed as the union 


r,s

 W
r
  [W

s
  [A(S) ]] 

To W
r
  [W

s
  [A(S) ]]  we ascribe a two-level colour  according to the formula 

  colour(r,s) =  N* colour(r) +  colour(s) 
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Where there is an ambiguity in the colour of a particular pixel, colour ranking determines the final colour. 

Note that a subset of the image W
s
  [A] has a unique colour under one level colour - but under two-level 

colour it will be broken down into sub-sets each of which is coloured in accordance with the given formula. 

This colouring scheme is clearly extendable to an arbitrary level. 
 

The n-level colouring scheme as described here requires that the sets of pixels constituting a digital 

approximation to the attractor, and then determining the various sub-sets of the attractor by a combination of 

mappings, then ascribing to the pixels in these sub-sets the colour as per the formula.  
 

A trivial example of such colouring is provided by the attractor of the set of four maps: 
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The attractor A(S) of these four maps is simply the unit square (0<x<1, 0<y<1). It is easy to see that W
0
  

maps  pixels within this square attractor W
0
 (A(S))  into the quadrant, 0<x<0.5 0<y<0.5, and that to each of 

the four mappings there is a unique quadrant, as per the diagrams of Fig 1. 
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Fig 1. Global labelling of square by the mappings  W
r
  (r=0,1,2,3)  above. 

(a) The quadrants  W
r
 (A)   of the square A . . (b) The 16 regions  W

s
 W

r
 (A)   that are a disjoint sub-

division of the square A. This map labelling leads to the map colour described here. 

One level colouring will colour each quadrant of this attractor, while two-level colouring will indicate the 16 

quadrants of these quadrants. We must stress that this is a deliberately trivial example. 

MAP COLOUR SYSTEM - VIA SYNTHESIS 

In the previous section it was shown how map colour could be applied to an already determined IFS set. In 

this section the means of applying map colour to pixels during the fractal synthesis process is described. 
 

Random Iteration Algorithm 

The random iteration algorithm for the synthesis of IFS fractals was introduced by Barnsley and co-workers 

in two classic papers. [3][4]. This algorithm requires that associated with each contractive map 

W
r
 (r =0,1,2,...N-1)  from the IFS set S is a probability p

r
 , the sum of these N probabilities being 1. 

For the map colour version of this algorithm, a numeric colour(r) is assigned to each of the N maps, and M, 

the number of colours to be utilised M specified to be a power of N, i.e.,     M =  

N.
m

      for m >0 

In the nomenclature introduced above, this system is called m-level colour. 

The colour algorithm applied to random iteration proceeds as follows: 
   

Starting from x  anywhere in the plane, chose at random in accord with the assigned probabilities, one of the 

maps W
r
   and proceed  to y = W

r
 (x) , to which is assigned a phantom mark colour,        mark_colour = 

colour(r). 

Chose at random in accord with the probabilities, one of the maps W
t
   and proceed  to W

t
 (y) .  
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        Set mark_colour  =  mark_colour*N  +  colour(t)     (mod M) 
 

Repeat about 50 times without actually marking any pixels. Thenceforth, continue but at each pixel actually 

mark it with the colour 

pixel colour = mark_colour   

Note that a particular pixel may be 'visited' during the random iteration more than once, and possibly 

assigned different colours on successive visits. A consistent colour can be maintained by assigning to each 

of the M colours a ranking, and only ever remarking a pixel with a colour of higher rank. 
 

It is worth mentioning that in his textbook Fractals Everywhere [5] Barnsley describes a very inefficient 

colour algorithm, wherein during the random iteration a count is located at each pixel, indicating how many 

times that pixel was visited. Hence in order to use M colours, the random iteration algorithm must proceed 

long enough for some pixels to be visited M times, so to reliably apply this method a multiple of the 

minimum number of iterations to mark all pixels of the set is required. In contrast, map colour determines 

pixel colour with no extra costs. 
 

Hutchinson's Algorithm 

Hutchinson's algorithm is a conceptual deterministic algorithm for generating the attractor of an IFS set. [2]. 

Issues related to effective utilisation of this algorithm were first raised by Dubuc and Elqortobi, [10] while 

this writer has described efficient and fast algorithms based (ultimately) on Hutchinson's algorithm. [6][7]. 

To state the algorithm simply requires the concept of IFS descendants of a point x as being the set of N 

points 

S(x)  =  {W
1
(x) , W

2
(x) ,W

3
(x) ,W

4
(x) ,W

5
(x) ,....W

N
(x) ,)}. 

The algorithm involves starting at one or more know points in the attractor. For example the fixed points  

p
r
   of the maps, 

  W
r
(p

r
)   =  p

r
  

Hutchinsons algorithm involves iteratively determining the descendants of the initial set, until no more 

descendants are determined. 
 

We refer the reader to [7] [for a discussion of means to 'prune' such algorithms, so that the descendants of a 

marked pixel are determined just once. It is the colouring of pixels that permits simple pruning schemes. 
 

Map colouring applied to Hutchinson's Algorithm, works as follows: 

The fixed points  p
r
   are marked with colour (r). The descendants of pixel y  with colour(y)  -  are marked - 

but only if not previously marked - with colour are determined one by one in order of increasing r, with the 

descendant W
r
(y)  being marked with pixel colour 

   N*colour(y)  + colour(r)     (mod M) 
 

To explicate this concept consider (cf [7]) the case of a set described by an IFS set involving three 

mappings: 

 

If there is a single seed point 0 and 3 maps in the IFS set,  there are 3  immediate descendants, simply called 

sons, and nine grandsons. However, these descendants pixels necessarily include previously marked pixels. 

In analogy to breadth-first and depth-first tree searching, there are two basic algorithms schemes for 

deterministic algorithms, as indicated in Fig 1: 
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Fig 1 Sequence of marking of 2 generations of descendants  from seed pixel 0 with 3 maps in the IFS set. On 

the left, generation-by-generation marking as for the Scanning Algorithms.  On the right, branch-by-branch 

marking as for the Stack Algorithm.  

 

Fig 1 demonstrates two extreme variants of actual implementations of Hutchinson's algorithm, termed the 

Scanning and the Stack Algorithm. In the implementations of these two computer algorithms described in 

[7], the Scanning Algorithm has the feature that the coordinates of marked pixels are located ' naturally' 

within an image region, so that marked pixels are detected by scanning the entire image region. On the other 

hand, the Stack Algorithm in [7] was implemented by simple use of a push-down stack. The Stack 

Algorithm ifs highly efficient for a few iterations, whereas the scanning algorithm is highly inefficient at 

start-up, as whole image has to be scanned when only a few pixels are present.  In [7] results established the 

merits of a hybrid approach, with a set number of levels of the Stack Algorithm, followed by the Scanning 

Algorithm. 

 

Examples 

The following examples have been produced with a 16 colour EGA  pallete. For those cases where 4 maps 

lie in the IFS set, we impose a restriction, in order to have a close approximation to map colour with M=16, 

we compute mark_colour by formula given, but then: 

 if mark_colour == WHITE then mark_colour= RED. 

 

CONCLUSIONS 

Map colour is a simple scheme for colouring, in a mathematically and aesthetically interesting way, the 

deterministic fractals images that are the digital approximations of the attractors of an IFS set of affine maps. 

The method can clearly be simply extended to other related fractals. 
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Fig  2 : The figure Magen coloured (a) using 1-level colour (b) using 2-level colour. Due to use of VGA 

colours, colour 15 (white) has been changed to 4. 

  

 

 

Fig 3   Barnsley Fern - which involves 4 

maps, coloured with 2-level colour.[6][7] 

Fig 4: Sierpinski Gasket [6][7]  with 2-

level colour. 

 

 

 

 

 

 
(a) 1-level colour (b) 2-level colour 

Fig 5. Castle fractal shown with 1- and 2-level colour. Generated using random iteration algorithm 

prematurely stopped - yielding pleasing ragged look. Fractal code in Table 5.2.1, of Barnsley's Fractals 

Everywhere [5] 

 

 

 

 


